

Reg. No.:

Fourth Semester B.Tech. Degree Examination, February 2015 (2008 Scheme)

Branch: Computer Science
08.403: COMPUTER HARDWARE DESIGN (R)
(Special Supplementary)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions.

 $(10\times4=40 \text{ Marks})$

- Explain how non-restoring algorithm gives better performance than restoring algorithm?
 - 2. Draw the schematic for 2×2 bit array multiplier.
 - 3. Explain normalization of floating-point data with an example.
 - 4. Design a circuit to implement following micro-operations.

$$T_3$$
: if (c=0) then $a \leftarrow a+b$
else if (d = 1) then $a \leftarrow a+c$

- 5. Show how arithmetic shift left operation differ in 2's complement, 1's complement and signed-magnitude representations.
- 6. What is scratch-pad memory? Explain its benefits.
- 7. Explain about micro-program.
- 8. Write a short note on micro-program sequences.
 - 9. What is the difference between PLA control and ROM control?
 - Explain the advantages of sequence register and decoder method over one flip-flop per state method.

PART-B

MODULE - I

11.	a)	Explain with example how divide overflow can be detected.	5
	b)	Using restoring division method divide –125 by +18.	15
		OR (ymmanalagué lerrage)	
12.	a)	Using Booth's method find the value of binary pattern (11101110011) ₂ .	6
	b)	With the help of flow chart explain floating point addition-subtraction algorithm.	14
		MODULE-II	
13.	Sh	now the full designing steps of an accumulator and draw its one typical stage?	20
		OR	
14.	a)	What is the range of numbers that can be accommodated in a 16-bit register when the binary numbers are represented in	
		a) sign-magnitude	
		b) sign-2's complement	
		Give the answers in equivalent decimal representation.	10
	b)	Explain bus organization inside CPU. MODULE - III	10
		MODULE - III	
15.	a)	Explain micro-programmed CPU organization.	15
	b)	Compare horizontal and vertical micro instructions.	5
		OR OR	
16.	Gi	ve the design of hard wired control for binary multiplier.	20